

Oscillator JTS75HC(V) · (VC)TCXO

- temp. compensated crystal oscillator, 7.0 x 5.0 mm
- low jitter Stratum 3 compliant TCXO / VCTCXO
- temperature range -40°C ~ +105°C available
- frequency stability of ± 50 ppb available
- ask for customized options

REACH

	Confl	ict
n	ninoral	froo
n	Confi ineral	

GENERAL D	DATA			
ТҮРЕ		JTS75HC / JTS75HCV (HCMOS output)		
frequency range		9.60 ~ 50.0 MHz (see table 4 on next page)		
frequency	at +25 °C (*1)	± 1.0 ppm max.		
tolerance / stability	after 2x reflow (*2)	± 0.5 ppm max.		
Stubility	temperature (*3)	see table 1		
	supply voltage (*4)	\pm 0.1 ppm max. (at V _{DC} \pm 5%)		
	load change (*5)	\pm 0.1 ppm max. (at nom load \pm 5%)		
	aging first year (*6)	± 1.0 ppm max. (at +25 °C)		
	aging per day (*7)	± 10.0 ppb max.		
	short term (ADEV)	0.2 ppb max. / 0.1 ppb typ. with τ = 1 sec		
holdover st	ability (*8)	± 0.37 ppm max.		
free run fre	quency stability (*9)	± 4.6 ppm max.		
current con	sumption max.	10.0 mA		
supply volta	age V _{DC}	3.3V (all ± 5%)		
tempera-	operating	see table 1		
ture	operable	-40 °C ~ +105 °C		
	storage	-55 °C ~ +105 °C		
output	rise/fall time max.	8ns (10% <-> 90% of VDC)		
	nominal load	15 pF		
	low level max.	0.4V		
	high level min.	V _{DC} - 0.4V		
start-up time max.		3.0 ms		

TABLE 1: FREQUENCY STABILITY CODE							
frequency stability temperature code		F ± 0.28 ppm	H ± 0.20 ppm	G ± 0.10 ppm	J ± 0.05 ppm		
-30 °C ~ +75 °C	G	0	0	0	0		
-40 °C ~ +85 °C	K	0	0	0	0		
-40 °C ~ +105 °C	Р	0	0	0	0		

O available

TABLE 2: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD							
$\rm V_{\rm c}$ frequency tuning range of JTS75HCV	code	code minimal					
	05X0	± 5.0 ppm	undefined				
table shows examples,	08X0	± 8.0 ppm	undefined				
ask for more options	0510	± 5.0 ppm	± 10.0 ppm				
	1015	± 10.0 ppm	± 15.0 ppm				

TABLE 3: VC CODING METHOD (EXAMPLES)						
V _c center voltage and	code	center of V _c	range of V _c			
V _c range	1616	1.65 V	± 1.65 V	1.65 V	$\pm 1.65 \text{ V}$ at $\text{V}_{\text{DC}} = 3.3 \text{ V}$	
	1610	1.65 V	± 1.00 V	$1.65 \text{ V} \pm 1.00 \text{ V} \text{ at V}_{DC} = 3.3 \text{ V}$		
	1515	1.50 V	± 1.50 V	1.50 V	± 1.50 V at V _{DC} = 3.3 V	
	1510	1.50 V	± 1.00 V	1.50 V	$\pm 1.00 \text{ V at V}_{DC} = 3.3 \text{ V}$	
V _c properties	input impedance of $V_{\rm c}$ min.			100 k0hm		
	$V_{\rm c}$ frequency tuning linearity max.			10 %		

For (*1) ~ (*9) please refer to definitions shown on the 2nd page of this datasheet

DIMENSIONS 7.0^{±0.2} max. TCXO VCTCXO JTS75HC JTS75HCV N1, N2, N3, N4: NC N1, N2, N3, N4: NC # 1: NC # 1: V_c # 2: GND # 2: GND #3: output #3: output 5.08±0.1 # 4: V_{CC} # 4: V_{cc} top view side view bottom view pad layout pin connection $in \ mm$

ORDER INFORMATION frequency stability operating temp. control voltage tuning range supply voltage 0 frequency type (for JTS75HCV) code code (for JTS75HCV) Oscillator 9.60 ~ 50 MHz JTS75HC = TCXO $F = \pm 0.28 \text{ ppm}$ $G = -30^{\circ}C \sim 75^{\circ}C$ 3.3 = 3.3 Vsee table 3 see table 2 JTS75HCV = VCTCXO $H = \pm 0.20 \text{ ppm}$ K = -40°C ~ 85°C $G = \pm 0.10 ppm$ P = -40°C ~ 105°C $J = \pm 0.05 \text{ ppm}$ Example: 0 10.0-JTS75HCV-F-K-3.3-1510-0510-LF (Suffix LF = RoHS compliant / Pb free)

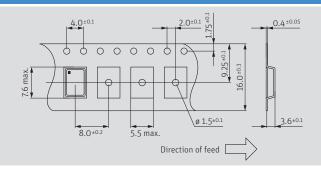
Oscillator JTS75HC(V) · Stratum 3 TCXO & VCTCXO

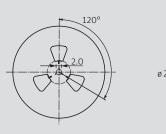
PHASE NOISE INFORMATION					
phase noise at fO 19.2 MHz, V _{DC} = 3.3 V @ +25 °C	at 10 Hz	-93 dBc/Hz typ.			
	at 100 Hz	-120 dBc/Hz typ.			
	at 1 KHz	-145 dBc/Hz typ.			
	at 10 KHz	-157 dBc/Hz typ.			
	at 100 KHz	-159 dBc/Hz typ.			

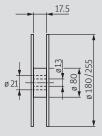
DEVELOPED FREQUENCIES						
all frequencies in MHz:	10.0	12.80	13.0	16.320	16.3840	
	18.4320	19.20	19.440	20.0	25.0	
	30.720	32.7680	38.880	40.0	50.0	

- non-multiple packing units are only supplied taped / bulk
- moisture sensitivity: MSL 2

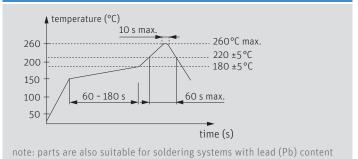
NOTE


- for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of $10\mu F$ closely to the supply voltage pins
- a separate voltage supply rail ensures best phase noise
- keep digital or high frequency signals as far away from V_c pin as possible


DEFINITIONS


PACKAGING NOTE

- *1: Measured frequency observed with T,=+25°C and C,=15pF, at nominal V_{nc} and nominal center V_c (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with $T_x = +25$ °C and $C_i = 15$ pF, at nominal V_{DC} and nominal center V_C (if applicable). At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- Ta varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal $\hat{\mathsf{V}}_{\mathsf{DC}}$ and nominal center V_{C} (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} is varied by ± 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_x=+25 °C and nominal load.
- *5: Frequency variation if the load is varied by ± 5% of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC}, nominal center V_C (if applicable), T_A=+25 °C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), $T_A = +25$ °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A = +25 °C, at nominal V_{nc} , nominal center V_c (if applicable), nominal load and after 1h of continuous operation.
- *8: The maximum frequency deviation within 24 hours including temperature variation. The initial status acquired at T_A =+25°C, at nominal V_{pc} , nominal center V_c (if applicable), nominal load and after 1h of continuous operation.
- *9: The maximum frequency deviation including stability vs. temperature, tolerance ex. factory, aging over 20 years, supply and load variation.


TAPING SPECIFICATION

REFLOW SOLDERING PROFILE

MARKING

internal code (optional) / frequency dot / internal code (optional) / date code (WWYY)

date code: two digits for week and two digits for year

